Uncertainty

- Uncertainty
- Probability
- Syntax and Semantics
- Inference

Outline

- Independence and Bayes' Rule
- Let action A_{t} = leave for airport t minutes before flight
- Will A_{t} get me there on time?
- Problems:
- 1) partial observability (road state, other drivers' plans, etc.)
- 2) noisy sensors (KCBS traffic reports)
- 3) uncertainty in action outcomes (flat tire, etc.)
- 4) immense complexity of modeling and predicting traffic
- Hence a purely logical approach either
- 1) risks falsehood: " A_{25} will get me there on time"
- or 2) leads to conclusions that are too weak for decision making:
- " A_{25} will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc. etc."
- (A_{1440} might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Uncertainty

- Default or nonmonotonic logic:
- Assume my car does not have a flat tire
- Assume A_{25} works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
- $\mathrm{A}_{25} \rightarrow{ }_{0.3}$ AtAirportOnTime
- Sprinkler $\rightarrow 0.99$ WetGrass
- WetGrass $\rightarrow{ }_{0.7}$ Rain
- Issues: Problems with combination,

Methods for Handling
 Uncertainty

 e.g., Sprinkler causes Rain??- Probability
- Given the available evidence, A_{25} will get me there on time with probability 0.04
- (Fuzzy logic handles degree of truth NOT uncertainty e.g., WetGrass is true to degree 0.2)
- Probabilistic assertions summarize effects of
- Laziness: failure to enumerate exceptions, qualifications, etc.
- Ignorance: lack of relevant facts, initial conditions, etc.
- Subjective or Bayesian probability:
- Probabilities relate propositions to one's own state of knowledge
- e.g., P(A A_{25} |no reported accidents) $=0.06$

Probability

- These are not claims of a "probabilistic tendency" in the current situation (but might be learned from past experience of similar situations)
- Probabilities of propositions change with new evidence:
- e.g., $\mathrm{P}\left(\mathrm{A}_{25} \mid\right.$ no reported accidents, 5 a.m. $)$
$=0.15$
- Suppose I believe the following:
- $\mathrm{P}\left(\mathrm{A}_{25}\right.$ gets me there on time | ... $)=0.04$
- $P\left(A_{90}\right.$ gets me there on time | ... $)=0.70$
- $P\left(A_{120}\right.$ gets me there on time $\left.\mid \ldots\right)=0.95$
- $\mathrm{P}\left(\mathrm{A}_{1440}\right.$ gets me there on time | ...) $=$ 0.9999
- Which action to choose?
- Depends on my preferences for missing flight vs. airport cuisine,

Making Decisions Under
 Uncertainty

 etc.- Utility theory is used to represent and infer preferences
- Decision theory = utility theory + probability theory
- Begin with a set Ω - the sample space
- e.g., 6 possible rolls of a die.
- $\omega \in \Omega$ is a sample point/possible world/atomic event
- A probability space or probability model is a sample space with an assignment $\mathrm{P}(\omega)$ for every $\omega \in \Omega$ such that

Probability Basics

- $0 \leq P(\omega) \leq 1$
- $\Sigma_{\omega} \mathrm{P}(\omega)=1$
- e.g.,
$P(1)=P(2)=P(3)=P(4)=P(5)=P(6)=1 / 6$
- An event A is any subset of Ω
- $P(A)=\sum_{\{\omega \in A\}} P(\omega)$
- E.g., $P($ die roll $<4)=P(1)+P(2)+$ $P(3)=1 / 6+1 / 6+1 / 6=1 / 2$
- A random variable is a function from sample points to some range, e.g., the reals or Booleans
- e.g., Odd(1)=true.

Random Variables

- P induces a probability distribution for any random variable X :
- $P\left(X=x_{i}\right)=\sum\left\{\omega: X(\omega)=x_{i}\right\} P(\omega)$
- e.g., $P($ Odd $=$ true $)=P(1)+P(3)+P(5)=1 / 6$
$+1 / 6+1 / 6=1 / 2$
- Think of a proposition as the event (set of sample points) where the proposition is true
- Given Boolean random variables A and B :
- event a = set of sample points where $A(\omega)=$ true
- event -a = set of sample points where $A(\omega)=$ false
- event $a \wedge b=$ points where $A(\omega)=$ true and $B(\omega)=$ true
- Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables
- With Boolean variables, sample point = propositional logic model
- e.g., $A=$ true, $B=$ false, or $a \wedge \neg b$.
- Proposition = disjunction of atomic events in which it is true

$$
\begin{aligned}
& \text { e.g., }(a \vee b) \equiv(\neg a \wedge b) \vee(a \wedge \neg b) \vee(a \wedge b) \Rightarrow \\
& P(a \vee b)=P(\neg a \wedge b)+P(a \wedge \neg b)+P(a \wedge b)
\end{aligned}
$$

Propositions

- The definitions imply that certain logically related events must have related probabilities
- E.g., $P(a \vee b)=P(a)+P(b)-P(a \wedge b)$
- de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.

Why use Probability?

- Propositional or Boolean random variables
- e.g., Cavity (do I have a cavity?)
- Cavity = true is a proposition, also written cavity
- Discrete random variables (finite or infinite)
- e.g., Weather is one of <sunny, rain, cloudy, snow>
- Weather = rain is a proposition
- Values must be exhaustive and mutually exclusive
- Continuous random variables (bounded or unbounded)
- e.g., Temp=21.6; also allow, e.g., Temp < 22.0.
- Arbitrary Boolean combinations of basic propositions

Syntax for Propositions

- Prior or unconditional probabilities of propositions
- e.g., P(Cavity =true) $=0.1$ and $P($ Weather =sunny) $=0.72$
correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
- $P($ Weather $)=<0.72,0.1,0.08,0.1>$ (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables (i.e., every

Prior Probability

 sample point)- $P($ Weather,Cavity $)=a 4 \times 2$ matrix of values:

Weather $=$	sunny	rain	cloudy	snow
Cavity $=$ true	0.144	0.02	0.016	0.02
Cavity $=$ false	0.576	0.08	0.064	0.08

- Every question about a domain can be answered by the joint distribution because every event is a sum of sample points
- Express distribution as a parameterized function of value:
- $P(X=x)=U[18,26](x)=$ uniform density between 18 and 26

Probability for Continuous
 Variables

- Here P is a density; integrates to 1.
- $P(X=20.5)=0.125$ really means

$$
\lim _{d x \rightarrow 0} P(20.5 \leq X \leq 20.5+d x) / d x=0.125
$$

$$
P(x)=\frac{1}{\sqrt{2 \pi \sigma}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Gaussian Density

- Conditional or posterior probabilities
- e.g., P(cavity|toothache) $=0.8$
- i.e., given that toothache is all I know
- NOT "if toothache then 80% chance of cavity"
- Notation for conditional distributions:
- P(Cavity|Toothache) = 2-element vector of 2-element vectors
- If we know more, e.g., cavity is also given, then we have
- P(cavity|toothache, cavity) =1
- Note: the less specific belief remains valid after more evidence arrives, but is not always useful
- New evidence may be irrelevant, allowing simplification, e.g.,
- P(cavity|toothache, 49ersWin) = P(cavity|toothache) $=0.8$
- This kind of inference, sanctioned by domain knowledge, is crucial

Conditional
 Probability

- Definition of conditional probability:

$$
P(a \mid b)=\frac{P(a \wedge b)}{P(b)} \text { if } P(b) \neq 0
$$

- Product rule gives an alternative formulation:

$$
P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)
$$

- A general version holds for whole distributions, e.g.,
- $P($ Weather,Cavity $)=$

Conditional
 Probability

 P(Weather|Cavity)P(Cavity)- (View as a 4×2 set of equations, not matrix multiplication)
- Chain rule is derived by successive application of product rule:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\mathbf{P}\left(X_{1}, \ldots, X_{n-1}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\mathbf{P}\left(X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n_{1}} \mid X_{1}, \ldots, X_{n-2}\right) \mathbf{P}\left(X_{n} \mid X_{1}, \ldots, X_{n-1}\right) \\
& \quad=\ldots \\
& \quad=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
\end{aligned}
$$

- Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Inference by
 Enumeration

- For any proposition ϕ, sum the atomic events where it is true:
- $\mathrm{P}(\phi)=\Sigma_{\omega: \omega \vDash \phi} \mathrm{P}(\omega)$
- Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	ᄀ catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
ᄀ cavity	.016	.064	.144	.576

Inference by
Enumeration

- For any proposition ϕ, sum the atomic events where it is true:
- $\mathrm{P}(\phi)=\Sigma_{\omega: \omega \vDash \phi} \mathrm{P}(\omega)$

$$
P(\text { toothache })=0.108+0.012+0.016+0.064=0.2
$$

- Start with the joint distribution:

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Enumeration

- For any proposition ϕ, sum the atomic events where it is true:
- $\mathrm{P}(\phi)=\Sigma_{\omega: \omega \vDash \phi} \mathrm{P}(\omega)$
$P($ cavity \vee toothache $)=0.108+0.012+0.072+0.008+0.016+0.064=0.28$
- Start with the joint distribution:

	toothache		ᄀ toothache	
	catch	\neg catch	catch	ᄀ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Inference by
 Enumeration

- Can also compute conditional probabilities

$$
\begin{aligned}
P(\neg \text { cavity } \mid \text { toothache }) & =\frac{P(\neg \text { cavity } \wedge \text { toothache })}{P(\text { toothache })} \\
& =\frac{0.016+0.064}{0.108+0.012+0.016+0.064}=0.4
\end{aligned}
$$

	toothache		\neg toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	. $\mathbf{5 7 6}$

- Denominator can be viewed as a

Normalization

 normalization constant$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache })=\alpha \mathbf{P}(\text { Cavity, toothache }) \\
& \quad=\alpha[\mathbf{P}(\text { Cavity, toothache, catch })+\mathbf{P}(\text { Cavity, toothache }, \neg \text { catch })] \\
& \quad=\alpha[\langle 0.108,0.016\rangle+\langle 0.012,0.064\rangle] \\
& =\alpha\langle 0.12,0.08\rangle=\langle 0.6,0.4\rangle
\end{aligned}
$$

- General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables
- Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E
- Let the hidden variables be $\mathrm{H}=\mathrm{X}-\mathrm{Y}-\mathrm{E}$
- Then the required summation of joint entries is done by summing out the
- hidden variables:
- $\mathrm{P}(\mathrm{Y} \mid \mathrm{E}=\mathrm{e})=\alpha \mathrm{P}(\mathrm{Y}, \mathrm{E}=e)=\alpha \Sigma_{\mathrm{h}} \mathrm{P}(\mathrm{Y}, \mathrm{E}=\mathrm{e}, \mathrm{H}=\mathrm{h})$
- The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables
- Obvious problems:
- 1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
- 2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
- 3) How to find the numbers for $O\left(d^{n}\right)$ entries???

Inference by Enumeration

- A and B are independent iff
- $P(A \mid B)=P(A)$ or $P(B \mid A)=P(B)$ or $P(A, B)=P(A) P(B)$
- $P($ Toothache,Catch,Cavity,Weather) $=$ P(Toothache,Catch,Cavity)P(Weather)
- 32 entries reduced to 12; for n

Independence

 independent biased coins, $2^{n} \longrightarrow n$- Absolute independence powerful but rare
- Dentistry is a large field with hundreds of variables, none of which are independent. What to do?

- P(Toothache,Cavity,Catch) has 2^{3} 1 = 7 independent entries
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
- (1) P(catch|toothache, cavity) = P(catch|cavity)
- The same independence holds if I haven't got a cavity:
- (2) P(catch|toothache, -cavity) = P(catch|-cavity)
- Catch is conditionally independent of Toothache given Cavity:
- $\mathrm{P}($ Catch|Toothache,Cavity $)=$ P(Catch|Cavity)
- Equivalent statements:
- $\mathrm{P}($ Toothache|Catch,Cavity $)=$ P(Toothache|Cavity)
- P (Toothache,Catch|Cavity) $=$ P(Toothache|Cavity)P(Catch | Cavity)

Conditional Independence

- Write out full joint distribution using chain rule:
- $P($ Toothache,Catch,Cavity $)=$ $P($ Toothache \mid Catch, Cavity $) \mathrm{P}($ Catch, Cavity $=$ $P($ Toothache|Catch,Cavity)P(Catch|Cavity)P(Cavity) $=$ P(Toothache|Cavity)P(Catch|Cavity)P(Cavity)
- I.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)
- In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n.
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.

Conditional Independence

Bayes' Rule

Product rule $P(a \wedge b)=P(a \mid b) P(b)=P(b \mid a) P(a)$

$$
\Rightarrow \text { Bayes' rule } P(a \mid b)=\frac{P(b \mid a) P(a)}{P(b)}
$$

or in distribution form

$$
\mathbf{P}(Y \mid X)=\frac{\mathbf{P}(X \mid Y) \mathbf{P}(Y)}{\mathbf{P}(X)}=\alpha \mathbf{P}(X \mid Y) \mathbf{P}(Y)
$$

Useful for assessing diagnostic probability from causal probability:

$$
P(\text { Cause } \mid E f f e c t)=\frac{P(\text { Effect } \mid \text { Cause }) P(\text { Cause })}{P(\text { Effect })}
$$

E.g., let M be meningitis, S be stiff neck:

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{0.8 \times 0.0001}{0.1}=0.0008
$$

Note: posterior probability of meningitis still very small!

Bayes' Rule and Conditional Independence

$$
\begin{aligned}
& \mathbf{P}(\text { Cavity } \mid \text { toothache } \wedge \text { catch }) \\
& =\alpha \mathbf{P}(\text { toothache } \wedge \text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity }) \\
& =\alpha \mathbf{P}(\text { toothache } \mid \text { Cavity }) \mathbf{P}(\text { catch } \mid \text { Cavity }) \mathbf{P}(\text { Cavity })
\end{aligned}
$$

This is an example of a naive Bayes model:

$$
\mathbf{P}\left(\text { Cause }, E f \text { fect }_{1}, \ldots, \text { Effect }_{n}\right)=\mathbf{P}(\text { Cause }) \Pi_{i} \mathbf{P}\left(\text { Effect }_{i} \mid \text { Cause }\right)
$$

Total number of parameters is linear in n

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

An Example

Estimated Probabilities for Weather Data

Outlook			Temperature			Humidity			Windy			Play	
	Yes	No	Yes	No									
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

Outlook			Temperature			Humidity			Windy			Play	
	Yes	No	Yes	No									
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	$9 /$	5/
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5	14	14
Rainy	3/9	2/5	Cool	3/9	1/5								

.A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	$?$

Likelihood of the two classes

$$
\begin{aligned}
& \text { For "yes" }=2 / 9 \times 3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0053 \\
& \text { For "no" }=3 / 5 \times 1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0206
\end{aligned}
$$

Conversion into a probability by normalization:

$$
\begin{aligned}
& P(\text { "yes" })=0.0053 /(0.0053+0.0206)=0.205 \\
& P(" n o ")=0.0206 /(0.0053+0.0206)=0.795
\end{aligned}
$$

.Probability of event H

 given evidence E :$$
\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}[E \mid H] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}
$$

.A priori probability of
H :
$\operatorname{Pr}[H]$

Bayes's Rule

.Probability of event
before evidence is seen
-A posteriori probability
of $H: \quad \operatorname{Pr}[H \mid E]$
.Probability of event
after evidence is seen
.Classification learning: what's the probability
of the class given an instance?

- Evidence $E=$ instance
-Event $H=$ class value for instance

Naïve Bayes for
Classification
.Naïve assumption:
evidence splits into parts (i.e. attributes) that are independent

$$
\operatorname{Pr}[H \mid E]=\frac{\operatorname{Pr}\left[E_{1} \mid H\right] \operatorname{Pr}\left[E_{2} \mid H\right] * \cdots * \operatorname{Pr}\left[E_{n} \mid H\right] \operatorname{Pr}[H]}{\operatorname{Pr}[E]}
$$

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	$?$
\leftarrow	Evidence \boldsymbol{E}			

	$\operatorname{Pr}[y e s \mid E]=\operatorname{Pr}[$ Outlook $=$ Sunny \mid yes $]$
	$\times \operatorname{Pr}[$ Temperature $=$ Cool \mid yes $]$
	$\times \operatorname{Pr}[$ Humidity $=$ High \mid yes $]$
	$\times \operatorname{Pr}[$ Windy $=$ True \mid yes $]$
	$\times \frac{\operatorname{Pr}[y e s]}{\operatorname{Pr}[E]} \quad=\frac{\frac{2}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{3}{9} \times \frac{9}{14}}{\operatorname{Pr}[E]}$
"yes"	

.What if an attribute value doesn't occur with every class value?
(e.g. "Outlook = overcast" for class "no")
-Probability will be zero!
-A posteriori probability will also be zero!
(No matter how likely the other values are!)
.Remedy: add a small value to the count for every attribute value-class combination
(Laplace estimator)

$$
\begin{aligned}
& \operatorname{Pr}[\text { Humidity }=\text { High } \mid y e s]=0 \\
& \operatorname{Pr}[y e s \mid E] \\
& =0
\end{aligned}
$$

The "Zero-
 Frequency
 Problem"

Modified Probability

.Example: attribute outlook for class yes

$$
\begin{aligned}
& \frac{2+\mu / 3}{9+\mu} \\
& \text { Sunny }
\end{aligned}
$$

$\frac{4+\mu / 3}{9+\mu}$
Overcast

$$
\frac{3+\mu / 3}{9+\mu}
$$

Rainy
.Weights don't need to be equal (but they must sum to 1)

$$
\frac{2+\mu p_{1}}{9+\mu} \quad \frac{4+\mu p_{2}}{9+\mu} \quad \frac{3+\mu p_{3}}{9+\mu}
$$

.Training: instance is not included in frequency count for attribute valueclass combination
.Classification: attribute will be

Missing Values

 omitted from calculation.Example:

Outlook	Temp.	Humidity	Windy	Play
$?$	Cool	High	True	$?$

$$
\begin{aligned}
& \text { Likelihood of "yes" }=3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0238 \\
& \text { Likelihood of "no" }=1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0343 \\
& P(\text { "yes") }=0.0238 /(0.0238+0.0343)=41 \% \\
& P(\text { "no" })=0.0343 /(0.0238+0.0343)=59 \%
\end{aligned}
$$

Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
$\mathbf{O K}$		3,2	4,2
$\mathbf{O K}$	$\mathbf{O K}$		
1,1	2,1	3,1	4,1

$P_{i j}=$ true iff $[i, j]$ contains a pit
$B_{i j}=$ true iff $[i, j]$ is breezy
Include only $B_{1,1}, B_{1,2}, B_{2,1}$ in the probability model

Specifying the Probability Model

First term: 1 if pits are adjacent to breezes, 0 otherwise Second term: pits are placed randomly, probability 0.2 per square:

$$
\mathbf{P}\left(P_{1,1}, \ldots, P_{4,4}\right)=\prod_{i, j=1,1}^{4,4} \mathbf{P}\left(P_{i, j}\right)=0.2^{n} \times 0.8^{16-n}
$$

for n pits.

Observations and
 Query

We know the following facts:

$$
\begin{aligned}
& b=\neg b_{1,1} \wedge b_{1,2} \wedge b_{2,1} \\
& \text { known }=\neg p_{1,1} \wedge \neg p_{1,2} \wedge \neg p_{2,1}
\end{aligned}
$$

Query is $\mathbf{P}\left(P_{1,3} \mid\right.$ known, $\left.b\right)$
Define U nknown $=P_{i j}$ s other than $P_{1,3}$ and Known
For inference by enumeration, we have

$$
\mathbf{P}\left(P_{1,3} \mid \text { known }, b\right)=\alpha \sum_{\text {unknown }} \mathbf{P}\left(P_{1,3}, \text { unknown, known, } b\right)
$$

Grows exponentially with number of squares!

Using Conditional Independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define Unknown $=$ Fringe \cup Other $\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Unknown $)=\mathbf{P}\left(b \mid P_{1,3}\right.$, Known, Fringe $)$

Manipulate query into a form where we can use this!

Using Conditional Independence

- Probability is a rigorous formalism for uncertain knowledge
- Joint probability distribution specifies probability of every atomic event
- Queries can be answered by summing over atomic events
- For nontrivial domains, we must find a way to reduce the joint size
- Independence and conditional independence provide the tools

Summary

